Recursion Solutions

Julian Xiao

January 252022

Recursion Practice

1. Instead of 10 questions, simplify the problem with assuming a lesser number of questions. Let a_{n} represent the answer to the problem if there are n questions in the quiz. We want to find the answer when there are 10 questions, which means we want to find a_{10}.

If $n=1$, which means there is 1 question in this quiz, then there are 2 possible answer keys: T and F. For $n=2$, there are 3 : TT, TF, FT. Simply repeat the same for more values of n, and stop once it becomes too tedious to keep listing. Here is a chart showing the values for small values of n :

n	a_{n}
1	2
2	3
3	5
4	8
5	13

Looking at the right side of the table, it's pretty clear what the pattern is: each number (besides a_{1} and a_{2}) is the sum of the two previous numbers. In algebraic terms, $a_{n}=a_{n-1}+a_{n-2}$. Even if you don't understand why this pattern exists, you can still use it and be pretty sure you will get the right answer. To find a_{10}, use the pattern to continue the chart:

n	a_{n}
\vdots	\vdots
6	21
7	34
8	55
9	89
10	144

So the total number of possible answer keys with 10 questions is 144 .
2. Let a_{n} represent the maximum number of pieces with n cuts. The answer we want to find is a_{10}. To find a pattern, we want to get as many small values as possible. The smallest value we can get isn't actually $n=1$, but actually $n=0$. The number of pieces with 0 cuts is 1 (the whole pizza). Here is a chart of the first few values:

n	a_{n}
0	1
1	2
2	4
3	7
4	11

The pattern is this: $a_{1}-a_{0}=1, a_{2}-a_{1}=2, a_{3}-a_{2}=3, a_{4}-a_{3}=4$. The difference between two consecutive a_{n} values goes up by 1. If we continue the chart using the pattern, you should get these values: $a_{5}=16, a_{6}=22, a_{7}=29, a_{8}=37, a_{9}=46, a_{10}=56$.
3. It's unreasonable to apply the recursive formula all the way to a_{100}, so we will make an explicit formula instead. Notice that for each a_{n} we have tried that it's simply the n-th triangular number plus 1 . This allows us to write this explicit formula: $a_{n}=\frac{n(n+1)}{2}+1$. This allows us to find a_{100} instantly: $a_{100}=\frac{100 \cdot 101}{2}+1=5051$.
4. Let a_{n} be the number of ways Jo can climb a flight of n stairs. Understand that $a_{0}=1$ because there is one way to climb 0 stairs: do nothing. In the future, remember that doing nothing may count as one way to do something. Here is a chart of n and a_{n}.

n	a_{n}
0	1
1	1
2	2
3	4
4	7
5	13

The pattern for values $n \geq 3$ is that a_{n} is the sum of the previous three terms. For the next values of a_{n} you should get $a_{6}=24, a_{7}=44, a_{8}=81$.
5. This is technically called "telescoping," which is a technique not exactly like recursion, but similar in the fact that we will use small examples to create a pattern. Try the following small cases:

$$
\begin{aligned}
\frac{1}{1 \cdot 2} & =\frac{1}{2} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3} & =\frac{2}{3} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4} & =\frac{3}{4} \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\frac{1}{4 \cdot 5} & =\frac{4}{5}
\end{aligned}
$$

So it's pretty easy to see what the pattern is: if the last term is $\frac{1}{(n-1) n}$, then the sum of the whole series is $\frac{n-1}{n}$. Therefore, the answer to the original problem is $\frac{99}{100}$.
6. Simplify the question. Let n be the number of questions in the quiz, and let a_{n} be the number of possible answer keys. Something that may not be obvious is that $a_{0}=1$ (the number of possible keys with 0 questions). Having an empty set of answers is one way to make an answer key of 0 questions. For almost all recursion problems, $a_{0}=1$. Create the chart with n and a_{n}. I will also include a third column with a list of all the possible answer keys.

n	a_{n}	All possible answer keys
0	1	\emptyset (a blank sequence of answers)
1	2	T, F
2	4	TT, TF, FT, FF
3	7	TTT, TTF, TFT, FTT, TFF, FTF, FFT
4	13	TTTT, TTTF, TTFT, TFTT, FTTT, TTFF, TFTF, TFFT, FTTF, FTFT, FFTT, FTFF, FFTF

The pattern for the a_{n} numbers is to add the previous three terms to get the next term. We can predict that $a_{5}=4+7+13=24$. Using this pattern, we can complete the sequence:

n	a_{n}
5	24
6	44
7	81
8	149
9	274
10	504

a_{10}, which means the answer to the problem if there are 10 questions, is 504 .
7. Using the recursive formula, we find $a_{3}=\frac{3}{11}, a_{4}=\frac{3}{15}$, and so on. It appears that $a_{n}=\frac{3}{4 n-1}$, for all n. Setting $n=2019$, we find $a_{2022}=\frac{3}{8087}$.
To prove this formula, we use induction. We are given that $a_{1}=1$ and $a_{2}=\frac{3}{7}$, which satisfy our formula. Now assume the formula holds true for all $n \leq m$ for some positive integer m. By our assumption, $a_{m-1}=\frac{3}{4 m-5}$ and $a_{m}=\frac{3}{4 m-1}$. Using the recursive formula,

$$
\begin{aligned}
a_{m+1} & =\frac{a_{m-1} \cdot a_{m}}{2 a_{m-1}-a_{m}} \\
& =\frac{\frac{3}{4 m-5} \cdot \frac{3}{4 m-1}}{2 \cdot \frac{3}{4 m-5}-\frac{3}{4 m-1}} \\
& =\frac{\left(\frac{3}{4 m-5} \cdot \frac{3}{4 m-1}\right)(4 m-5)(4 m-1)}{\left(2 \cdot \frac{3}{4 m-5}-\frac{3}{4 m-1}\right)(4 m-5)(4 m-1)} \\
& =\frac{9}{6(4 m-1)-3(4 m-5)} \\
& =\frac{3}{4(m+1)-1}
\end{aligned}
$$

so our induction is complete.
8. Let n be the number of consecutive integers in the main set (e.g. $n=3$ means $\{1,2,3\}$, and $n=0$ means an empty set). Here is the chart of n and a_{n}.

n	a_{n}	All possible spacy subsets
0	1	\emptyset
1	2	$\emptyset,\{1\}$
2	3	$\emptyset,\{1\},\{2\}$
3	4	$\emptyset,\{1\},\{2\},\{3\}$
4	6	$\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,4\}$
5	9	$\emptyset,\{1\},\{2\},\{3\},\{4\},\{5\},\{1,4\},\{1,5\},\{2,5\}$
6	13	$\emptyset,\{1\},\{2\},\{3\},\{4\},\{5\},\{6\},\{1,4\},\{1,5\},\{1,6\},\{2,5\},\{2,6\},\{3,6\}$

The pattern is that each term in a_{n} for $n \geq 3$ is the sum of the previous term and the term three before. $a_{n}=a_{n-1}+a_{n-3}$. So for example $a_{7}=a_{6}+a_{4}=13+6=19$. If you wish, you may check the number of spacy sets for $n=7$, and you will get 19 , confirming the pattern. Continue the table using this pattern.

n	a_{n}
7	19
8	28
9	41
10	60
11	88
12	129

a_{12} is the total number of spacy sets of 12 consecutive integers, which is the original problem. The answer is then (E)129.

